

# KDD 2022 Research Track Learning Optimal Priors for Task-Invariant Representations in Variational Autoencoders

**Hiroshi Takahashi**<sup>1</sup>, Tomoharu Iwata<sup>1</sup>, Atsutoshi Kumagai<sup>1</sup>, Sekitoshi Kanai<sup>1</sup>, Masanori Yamada<sup>1</sup>, Yuuki Yamanaka<sup>1</sup>, Hisashi Kashima<sup>2</sup>

<sup>1</sup>NTT, <sup>2</sup>Kyoto University

## [Introduction] Variational Autoencoder



 The variational autoencoder (VAE) is a powerful latent variable model for unsupervised representation learning.





downstream applications

(such as classification, data generation, out-of-distribution detection, etc.)

## [Introduction] Multi-Task Learning



- However, the VAE cannot perform well with insufficient data points since it depends on neural networks.
- To solve this, we focus on obtaining task-invariant latent variable from multiple tasks.



### [Introduction] Conditional VAE



• For multiple tasks, the conditional VAE (CVAE) is widely used, which tries to obtain task-invariant latent variable.



## [Introduction] Problem and Contribution



- Although the CVAE can reduce the dependency of z on s
  to some extent, this dependency remains in many cases.
- The contribution of this study is as follows:

- We investigate the cause of the task-dependency in the CVAE and reveal that the simple prior is one of the causes.
- 2. We introduce the **optimal prior** to reduce the task-dependency.

 We theoretically and experimentally show that our learned representation works well on multiple tasks.

## [Preliminaries] Reviewing CVAE



The CVAE models a conditional probability of x given s as:

$$p_{\theta}(\mathbf{x}|s) = \int \frac{p_{\theta}(\mathbf{x}|\mathbf{z}, s)p(\mathbf{z})d\mathbf{z}}{\frac{\mathbf{decoder}}{\mathbf{prior}}} \frac{\mathbf{z}}{\mathbf{encoder}} \left[ \frac{p_{\theta}(\mathbf{x}|\mathbf{z}, s)p(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x}, s)} \right]$$

• The CVAE is trained by maximizing the ELBO that is the lower bound of the log-likelihoods as follows:

$$\mathcal{F}_{\text{CVAE}}(\theta, \phi) = \mathbb{E}_{p_D(\mathbf{x}, s) q_{\phi}(\mathbf{z} | \mathbf{x}, s)} \left[ \ln p_{\theta}(\mathbf{x} | \mathbf{z}, s) \right]$$

$$- \mathbb{E}_{p_D(\mathbf{x}, s)} \left[ D_{KL}(q_{\phi}(\mathbf{z} | \mathbf{x}, s) || p(\mathbf{z})) \right]$$

 $=\mathcal{R}(\phi)$ 

## [Preliminaries] Mutual Information



• To investigate the cause of dependency of z on s, we introduce the mutual information I(S; Z), which measures the mutual dependence between two random variables.



## [Proposed] Theorem 1



• The CVAE tries to minimize the mutual information I(S; Z) by minimizing its upper bound  $\mathcal{R}(\phi)$ :

$$\mathcal{R}(\phi) \equiv \mathbb{E}_{p_D(\mathbf{x},s)} \left[ D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x},s) \| p(\mathbf{z})) \right] \qquad \text{between } \mathbf{x} \text{ and } \mathbf{z}$$

$$= I(S;Z) + D_{KL}(q_{\phi}(\mathbf{z}) \| p(\mathbf{z})) + \sum_{k=1}^{K} \underline{\pi_k} I(X^{(k)};Z^{(k)})$$

$$q_{\phi}(\mathbf{z}) = \int q_{\phi}(\mathbf{z}|\mathbf{x},s) p_D(\mathbf{x},s) \mathrm{d}\mathbf{x} \qquad \underline{\pi_k} = p(s=k)$$

• However,  $\mathcal{R}(\phi)$  is NOT a tight upper bound of I(S; Z) since  $D_{KL}(q_{\phi}(\mathbf{z})||p(\mathbf{z}))$  usually gives a large value.

## [Proposed] Effects of Priors



• That is, the simple prior  $p(\mathbf{z})$  is **one causes of the task-dependency**, and  $q_{\phi}(\mathbf{z})$  is the **optimal prior** to reduce it.



## [Proposed] Theorem 2



• The ELBO with this optimal prior  $\mathcal{F}_{\text{Proposd}}(\theta, \phi)$  is always larger than or equal to original ELBO  $\mathcal{F}_{\text{CVAE}}(\theta, \phi)$ :

$$\mathcal{F}_{\text{Proposed}}(\theta, \phi) = \mathcal{F}_{\text{CVAE}}(\theta, \phi) + D_{KL}(q_{\phi}(\mathbf{z}) || p(\mathbf{z})) \ge \mathcal{F}_{\text{CVAE}}(\theta, \phi)$$

- That is,  $\mathcal{F}_{\text{Proposd}}(\theta, \phi)$  is also a better lower bound of the log-likelihood than  $\mathcal{F}_{\text{CVAE}}(\theta, \phi)$ .
- This contributes to obtaining better representation for the improved performance on the target tasks.

## [Proposed] Optimizing $\mathcal{F}_{Proposd}(\theta, \phi)$



• We optimize  $\mathcal{F}_{\text{Proposd}}(\theta, \phi) = \mathcal{F}_{\text{CVAE}}(\theta, \phi) + D_{KL}(q_{\phi}(\mathbf{z})||p(\mathbf{z}))$ by approximating the KL divergence  $D_{KL}(q_{\phi}(\mathbf{z})||p(\mathbf{z}))$ :

$$D_{KL}(q_{\phi}(\mathbf{z})||p(\mathbf{z})) = \int q_{\phi}(\mathbf{z}) \ln \frac{q_{\phi}(\mathbf{z})}{p(\mathbf{z})} d\mathbf{z}$$

• We approximate  $q_{\phi}(\mathbf{z})/p(\mathbf{z})$  by density ratio trick, which can estimate the density ratio between two distributions using samples from both distribution (See Section 3.3).

## [Proposed] Theoretical Contributions



Our theoretical contributions are summarized as follows:

Theorem 1 shows:

- The **simple prior** is one of the causes of the task-dependency.
- $q_{\phi}(\mathbf{z})$  is the **optimal prior** to reduce the task-dependency.

Theorem 2 shows:

- $\mathcal{F}_{Proposd}(\theta,\phi)$  gives a better lower bound of the log-likelihood, which enables us to obtain better representation than the CVAE.
- We next evaluate our representation on various datasets.

## [Experiments] Datasets



 We used two handwritten digits (USPS and MNIST), two house number digits (SynthDigits and SVHN), and three face datasets (Frey, Olivetti, and UMist).

|                    | Dimension | Train size | Valid size | Test size |
|--------------------|-----------|------------|------------|-----------|
| USPS               | 784       | 6,438      | 1,000      | 1,860     |
| MNIST              | 784       | 10,000     | 10,000     | 10,000    |
| <b>SynthDigits</b> | 1,024     | 10,000     | 10,000     | 9,553     |
| SVHN               | 1,024     | 10,000     | 10,000     | 26,032    |
| Frey               | 560       | 1,565      | 200        | 200       |
| Olivetti           | 560       | 150        | 100        | 150       |
| UMist              | 560       | 300        | 75         | 200       |

## [Experiments] Settings



- On digits datasets, we conducted two-task experiments, which estimate the performance on the target tasks:
  - The source task has a lot of training data points.
  - The target task has only 100 training data points.
  - Pairs are (USPS→MNIST), (MNIST→USPS), (SynthDigits→SVHN), and (SVHN→SynthDigits).
- On face datasets, we conducted three-task experiment, which simultaneously evaluates the performance on each task using a single estimator.

## [Results] Visualizing Representations



#### **Visualization of latent variables on USPS→MNIST**



## [Results] Density Estimation Performance



|               | VAE                 | CVAE                | Proposed            |
|---------------|---------------------|---------------------|---------------------|
| USPS→MNIST    | $-163.25 \pm 2.15$  | $-152.32 \pm 1.64$  | $-149.08 \pm 0.86$  |
| MNIST→USPS    | $-235.23 \pm 1.54$  | $-211.18 \pm 0.55$  | $-212.11 \pm 1.48$  |
| Synth→SVHN    | $1146.04 \pm 35.65$ | $1397.36 \pm 10.89$ | $1430.27 \pm 11.44$ |
| SVHN→Synth    | $760.66 \pm 8.85$   | $814.63 \pm 10.09$  | 855.51 ± 11.41      |
| Face Datasets | 895.41 ± 2.98       | 902.99 ± 3.69       | $913.08 \pm 5.05$   |

Almost equal to or better performance than other approaches

## [Results] Downstream Classification



|            | VAE             | CVAE                         | Proposed        |
|------------|-----------------|------------------------------|-----------------|
| USPS→MNIST | $0.52 \pm 2.15$ | $0.53 \pm 0.02$              | $0.68\pm0.01$   |
| MNIST→USPS | $0.64 \pm 0.01$ | $0.67 \pm 0.01$              | $0.74 \pm 0.02$ |
| Synth→SVHN | $0.20 \pm 0.00$ | $\boldsymbol{0.21 \pm 0.00}$ | $0.19 \pm 0.00$ |
| SVHN→Synth | $0.25 \pm 0.01$ | $0.25 \pm 0.00$              | $0.26 \pm 0.00$ |

Almost equal to or better performance than other approaches

#### **Conclusion**



Our contribution for the CVAE are summarized as follows:

Theorem 1 shows:

- The simple prior is one of the causes of the task-dependency.
- We propose the optimal prior to reduce the task-dependency.

Theorem 2 shows:

 Our approach gives a better lower bound of the log-likelihood, which enable us to obtain better representation than the CVAE.

**Experiments shows:** 

Our approach achieves better performance on various datasets.

## Thank you for listening!



My paper, slide, and poster are here:

