

Student-t Variational Autoencoder for Robust Density Estimation

<u>Hiroshi Takahashi¹</u>, Tomoharu Iwata², Yuki Yamanaka³, Masanori Yamada³, Satoshi Yagi¹

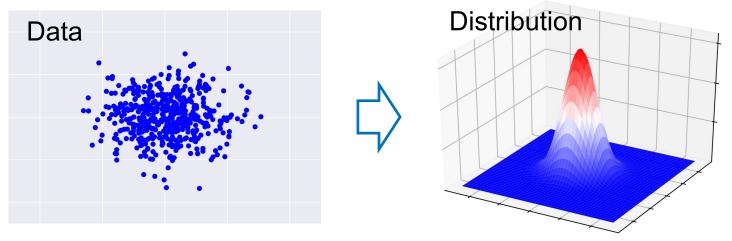
¹NTT Software Innovation Center ²NTT Communication Science Laboratories ³NTT Secure Platform Laboratories

If you use the VAE for continuous data, we recommend using the Student-t distribution as the decoder!

[Introduction]

Multivariate density estimation

- Estimating data distributions is important for AI
 - especially for image, audio, video, and detection tasks



- The VAE is widely used since it can learn the highdimensional complicated distributions in these tasks
- We focus on estimating distributions of continuous data with the VAE

[Preliminary]

Variational Autoencoders (VAE) (1/3)

 The VAE estimates the probability of a continuous data point x by using latent variable z:

$$p_{\theta}(\mathbf{x}) = \int \frac{p_{\theta}(\mathbf{x} \mid \mathbf{z})}{\text{decoder}} \frac{p(\mathbf{z})}{\text{prior}} d\mathbf{z}$$

 The log marginal likelihood of VAE is bounded below by the evidence lower bound (ELBO):

$$\frac{\ln p_{\theta}\left(\mathbf{x}\right)}{\geq \mathbb{E}_{q_{\phi}\left(\mathbf{z}\mid\mathbf{x}\right)}\left[\ln p_{\theta}\left(\mathbf{x}\mid\mathbf{z}\right)\right] - D_{KL}\left(\underline{q_{\phi}\left(\mathbf{z}\mid\mathbf{x}\right)}\left\|p\left(\mathbf{z}\right)\right) }{\text{encoder}}$$

The VAE is trained to maximize the sum of ELBO

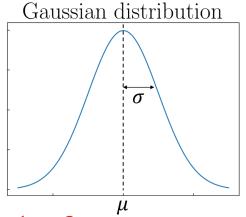
[Preliminary]

Variational Autoencoders (VAE) (2/3)

 For continuous data, the encoder, decoder, and prior distributions are usually modeled by a Gaussian:

$$p\left(\mathbf{z}
ight) = \mathcal{N}\left(\mathbf{z}|\mathbf{0},\mathbf{I}
ight)$$
 : standard Gaussian

$$p_{\theta}\left(\mathbf{x}|\mathbf{z}\right) = \mathcal{N}\left(\mathbf{x} \mid \underline{\mu_{\theta}\left(\mathbf{z}\right)}, \underline{\sigma_{\theta}^{2}\left(\mathbf{z}\right)}\right)$$



estimated by neural networks with parameter $\boldsymbol{\theta}$

$$q_{\phi}\left(\mathbf{z} \mid \mathbf{x}\right) = \mathcal{N}\left(\mathbf{z} \mid \underline{\mu_{\phi}\left(\mathbf{x}\right)}, \underline{\sigma_{\phi}^{2}\left(\mathbf{x}\right)}\right)$$

estimated by neural networks with parameter ϕ

[Preliminary]

Variational Autoencoders (VAE) (3/3)

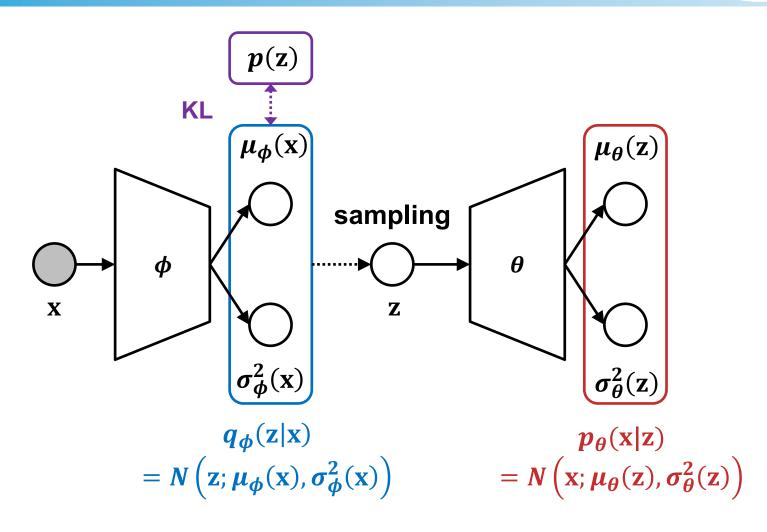
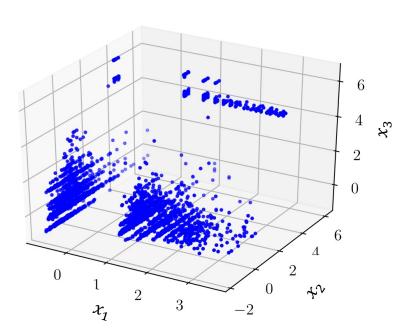


Diagram of VAE for continuous data

[Our problem]

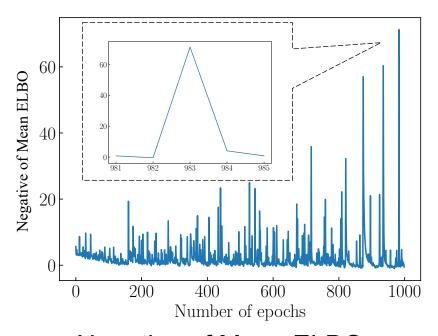
Instability of training VAE with Gaussian decoder

- When we use the Gaussian as the decoder, the training of VAE often becomes unstable
 - For example, when we train KDD99 SMTP with VAE, Negative of Mean ELBO sharply jumped up during training



KDD99 SMTP Dataset

$$\mathbf{x} = (x_1, x_2, x_3)^T$$



Negative of Mean ELBO

[Our problem]

Cause of this instability: too small variance

The cause is division by too small variance in ELBO

the variance of these data points is too small along x_1 direction

First term of ELBO

$$\ln p_{\theta} \left(\mathbf{x} \mid \mathbf{z} \right) = \ln \mathcal{N} \left(\mathbf{x} \mid \mu_{\theta} \left(\mathbf{z} \right), \sigma_{\theta}^{2} \left(\mathbf{z} \right) \right)$$

$$= \sum_{d} \left[-\frac{\left(\mathbf{x}_{d} - \mu_{\theta,d}\left(\mathbf{z}\right)\right)^{2}}{2\sigma_{\theta,d}^{2}\left(\mathbf{z}\right)} - \frac{1}{2} \ln 2\pi \sigma_{\theta,d}^{2}\left(\mathbf{z}\right) \right]$$

d: dimension index

When the decoded variance $\sigma_{\theta}^2(\mathbf{z})$ is almost zero, this term is sensitive to the error between \mathbf{x} and its decoded mean $\mu_{\theta}(\mathbf{z})$

[Idea]

Introducing a prior for the variance

- We can avoid this instability problem by preventing the decoded variance $\sigma_{\theta}^2(\mathbf{z})$ from being too small
- To penalize small variance, we introduce a Gamma distribution as the prior for the decoded variance $\sigma_{\theta}^2(\mathbf{z})$

$$Gam (\tau \mid a, b) = \frac{b^{a} \tau^{a-1} \exp (-b\tau)}{\Gamma (a)}$$

 τ : the inverse of the variance $(1/\sigma^2)$

As a simple way: MAP estimation

- First, we present the MAP estimation for the VAE
 - To simplify the calculation, we use $Gam(\tau|1,b)$ as the prior
 - Then, the objective function of MAP estimation is:

$$\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln p_{\theta} \left(\mathbf{x} \mid \mathbf{z} \right) - \frac{b}{\sigma_{\theta}^{2}(\mathbf{z})} \right] - D_{KL} \left(q_{\phi} \left(\mathbf{z} \mid \mathbf{x} \right) \| p \left(\mathbf{z} \right) \right)$$

small variance is penalized with regularization parameter *b*

- However, there are two drawbacks in MAP estimation
 - 1. Tuning *b* is difficult
 - 2. The constant b lacks flexibility in density estimation
 - b should depend on a data point

Student-t decoder

 We propose a more flexible approach by introducing a Gamma prior that depends on latent variables:

$$Gam (\tau \mid a(\mathbf{z}), b(\mathbf{z}))$$

• By analytically integrating out the τ , we can obtain a Student-t decoder:

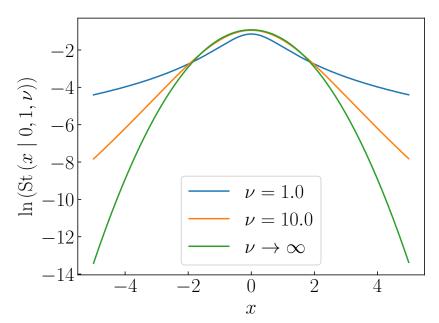
$$p_{\theta} (\mathbf{x} \mid \mathbf{z}) = \int_{0}^{\infty} \mathcal{N} (\mathbf{x} \mid \mu_{\theta} (\mathbf{z}), \tau^{-1}) \operatorname{Gam} (\tau \mid a (\mathbf{z}), b (\mathbf{z})) d\tau$$
$$= \operatorname{St} (\mathbf{x} \mid \mu_{\theta} (\mathbf{z}), \lambda_{\theta} (\mathbf{z}), \nu_{\theta} (\mathbf{z}))$$

where

$$\lambda_{\theta}(\mathbf{z}) = a(\mathbf{z})/b(\mathbf{z}), \nu_{\theta}(\mathbf{z}) = 2a(\mathbf{z})$$

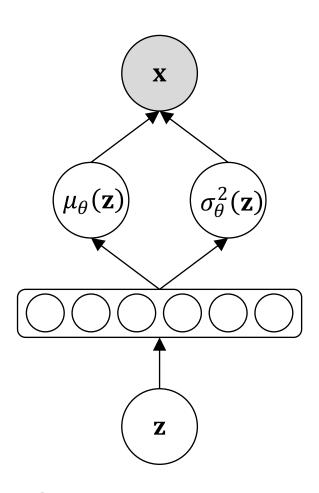
Robustness of Student-t decoder

- Since the Student-t distribution is heavy-tailed (has large variance), the Student-t decoder is robust to the error between the data point and its decoded mean
 - The appropriate robustness is set by $\nu_{\theta}(\mathbf{z})$, which makes the training of VAE stable!

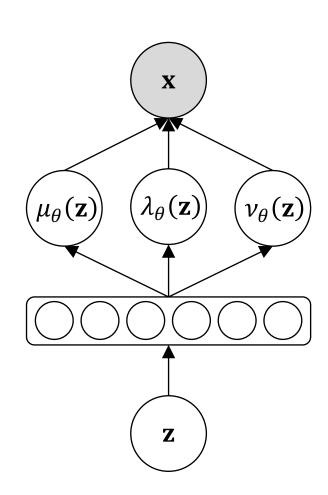


Plot of $St(x|0,1,\nu)$ in log scale

Diagram of Student-t decoder



Gaussian decoder

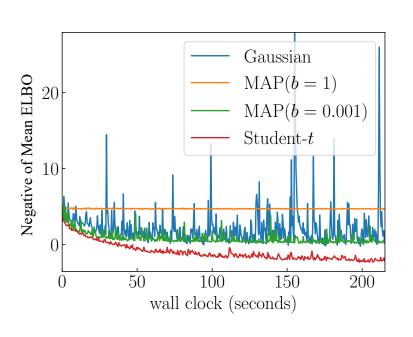


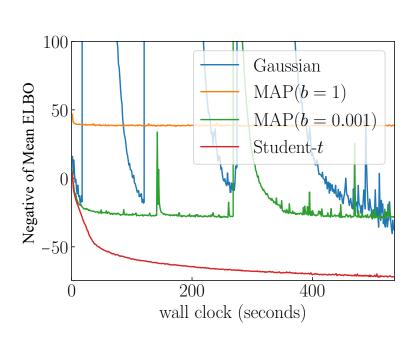
Student-t decoder

[Experiments]

Stability of training

 Our approach reduced the negative ELBO equal to or more stably than other approaches





SMTP Aloi

Negative of Mean ELBO for each dataset

[Experiments]

Test log-likelihoods

 Our approach obtained the equal to or better density estimation performance than that of other approaches.

	Gaussian	MAP(b=1)	MAP(b = 0.001)	Student-t
SMTP	-1.248 ± 0.404	-4.864 ± 0.020	-1.932 ± 0.404	$\textbf{0.827}\pm\textbf{0.105}$
Aloi	45.418 ± 5.457	-38.210 ± 0.156	30.406 ± 0.383	77.022 ± 0.539
Thyroid	15.519 ± 4.422	-31.266 ± 0.159	18.037 ± 1.318	69.543 ± 0.634
Cancer	-18.668 \pm 3.448	-45.895 ± 0.843	$\textbf{-19.017}\pm3.273$	-18.253 \pm 2.629
Satellite	$\textbf{-1.852}\pm\textbf{0.370}$	-50.895 ± 0.238	$\textbf{-1.899}\pm\textbf{0.372}$	$\textbf{-1.811}\pm\textbf{0.289}$

Comparison of test log-likelihoods¹

¹We highlighted the best result in bold, and we also highlighted the results in bold which are not statistically different from the best result according to a pair-wise t-test.

In conclusion

 We proposed the Student-t VAE for robust multivariate density estimation

 We experimentally showed that the stability of the training and the high density estimation performance of the Student-t VAE

 We recommend using the Student-t distribution as the decoder If you use the VAE for continuous data!

Thank you for your attention!

If you have any questions,

email me: takahashi.hiroshi@lab.ntt.co.jp

FAQ

Q1: Did you compare this model with GAN?

 A1: With SMTP dataset, we compared Student-t VAE with Wasserstein GAN, and confirmed that the test log likelihood of the Student-t VAE was better than that of Wasserstein GAN.

Q2: What is the limitation of this approach?

 A2: This approach requires heavier computational cost than Gaussian decoder. (about 1.5 times)

Q3: Is this approach useful when the dataset is discrete?

 A3: If the dataset is binary, we recommend using the Bernoulli distribution as the decoder. Other than that, our approach may be useful.

