4836: Variational Autoencoder with Implicit Optimal Priors

In short

- For the VAE, the aggregated posterior has been introduced as the prior of latent variable, which is the optimal in terms of maximizing the training objective function.
- Since this optimal prior is difficult to model explicitly, we implicitly models this optimal prior by density ratio trick.
- Our approach achieved high density estimation performance.

	MNIST	OMNIGLOT	FreyFaces	Histopathology
Standard VAE VAE with VampPrior	-85.84 ± 0.07 -83.90 ± 0.08	-111.39 ± 0.11 -110.53 ± 0.09	1382.53 ± 3.57 1392 62 ± 6 25	$\frac{1081.53 \pm 0.70}{1083.11 \pm 2.10}$
Proposed method	$\approx -83.21 \pm 0.13$	\approx -108.48 ± 0.16	$pprox 1392.02 \pm 0.23$ $pprox 1396.27 \pm 2.75$	$\approx 1087.42 \pm 0.60$

Table 2: Comparison of test log-likelihoods on four image datasets.

• Why can our approach achieve good performance?

• To explain this, we did experiment with 4-dimensional One Hot Vector dataset, and plotted the latent vector $z \in \mathbb{R}^2$.

• Our approach makes the posterior of latent vectors different from each other and data points are easy to reconstruct from them, which improves the density estimation performance.

2