Learning Optimal Priors for Task-Invariant Representations in VAEs **Hiroshi Takahashi**¹, Tomoharu Iwata¹, Atsutoshi Kumagai¹, Sekitoshi Kanai¹, Masanori Yamada¹, Yuuki Yamanaka¹, Hisashi Kashima² ¹NTT, ²Kyoto University ## 1. Conditional Variational Autoencoder - The variational autoencoder (VAE) is a powerful latent variable model for unsupervised representation learning, but it cannot perform well with insufficient data points. - To solve this, the conditional VAE (CVAE) tries to obtain task-invariant latent variable from multiple tasks. ## standard Gaussian prior # downstream applications The CVAE models a conditional probability of x given s as: $$p_{\theta}(\mathbf{x}|s) = \int \frac{p_{\theta}(\mathbf{x}|\mathbf{z}, s)p(\mathbf{z})d\mathbf{z}}{\text{decoder prior}} \mathbb{E}_{\substack{q_{\phi}(\mathbf{z}|\mathbf{x}, s)\\ \text{encoder}}} \left[\frac{p_{\theta}(\mathbf{x}|\mathbf{z}, s)p(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x}, s)} \right]$$ • The CVAE is trained by maximizing the evidence lower bound (ELBO) as follows: $$\mathcal{F}_{\text{CVAE}}(\theta, \phi) = \mathbb{E}_{p_D(\mathbf{x}, s) q_{\phi}(\mathbf{z} | \mathbf{x}, s)} \left[\ln p_{\theta}(\mathbf{x} | \mathbf{z}, s) \right]$$ $$- \mathbb{E}_{p_D(\mathbf{x}, s)} \left[D_{KL}(q_{\phi}(\mathbf{z} | \mathbf{x}, s) || p(\mathbf{z})) \right]$$ $$= \mathcal{R}(\phi)$$ #### 2. Problem and Contribution - Although the CVAE can reduce the dependency of **z** on *s* to some extent, this dependency remains in many cases. - The contribution of this study is as follows: - 1. We investigate the cause of the task-dependency in the CVAE and reveal the **simple prior** is one of the causes. - 2. We introduce the **optimal prior** to reduce the task-dependency. - 3. We theoretically and experimentally show that our learned representation works well on multiple tasks. #### 3. Mutual Information • To investigate the cause of dependency of z on s, we introduce the mutual information I(S; Z) that measures the mutual dependence between two random variables. ### 4a. Theorem 1 • The CVAE tries to minimize the mutual information I(S; Z) by minimizing its **loose** upper bound $\mathcal{R}(\phi)$: • That is, the simple prior $p(\mathbf{z})$ is one causes of the task-dependency, and $q_{\phi}(\mathbf{z}) = \int q_{\phi}(\mathbf{z}|\mathbf{x},s)p_{D}(\mathbf{x},s)\mathrm{d}\mathbf{x}$ is the optimal prior to reduce it. ## 4b. Theorem 2 • The ELBO with this optimal prior $\mathcal{F}_{\text{Proposd}}(\theta, \phi)$ is always larger than or equal to original ELBO $\mathcal{F}_{\text{CVAE}}(\theta, \phi)$: $$\mathcal{F}_{\text{Proposed}}(\theta, \phi) = \mathcal{F}_{\text{CVAE}}(\theta, \phi) + D_{KL}(q_{\phi}(\mathbf{z}) || p(\mathbf{z})) \ge \mathcal{F}_{\text{CVAE}}(\theta, \phi)$$ • That is, $\mathcal{F}_{\text{Proposd}}(\theta, \phi)$ is also a **better lower bound of the log-likelihood** than $\mathcal{F}_{\text{CVAE}}(\theta, \phi)$, which contributes to obtaining better representation. ### 5. Experiments ## Visualization of latent variables on USPS→MNIST #### **Density estimation performance** | | VAE | CVAE | Proposed | |------------|---------------------|---------------------|---------------------| | USPS→MNIST | -163.25 ± 2.15 | -152.32 ± 1.64 | -149.08 ± 0.86 | | MNIST→USPS | -235.23 ± 1.54 | -211.18 ± 0.55 | -212.11 ± 1.48 | | Synth→SVHN | 1146.04 ± 35.65 | 1397.36 ± 10.89 | 1430.27 ± 11.44 | | SVHN→Synth | 760.66 ± 8.85 | 814.63 ± 10.09 | 855.51 ± 11.41 | #### **Downstream classification accuracy** | | VAE | CVAE | Proposed | | |------------|-----------------|-----------------|-----------------|--| | USPS→MNIST | 0.52 ± 2.15 | 0.53 ± 0.02 | 0.68 ± 0.01 | | | MNIST→USPS | 0.64 ± 0.01 | 0.67 ± 0.01 | 0.74 ± 0.02 | | | Synth→SVHN | 0.20 ± 0.00 | 0.21 ± 0.00 | 0.19 ± 0.00 | | | SVHN→Synth | 0.25 ± 0.01 | 0.25 ± 0.00 | 0.26 ± 0.00 | |