

Learning Optimal Priors for Task-Invariant Representations in VAEs

Hiroshi Takahashi¹, Tomoharu Iwata¹, Atsutoshi Kumagai¹, Sekitoshi Kanai¹, Masanori Yamada¹, Yuuki Yamanaka¹, Hisashi Kashima²

¹NTT, ²Kyoto University

1. Conditional Variational Autoencoder

- The variational autoencoder (VAE) is a powerful latent variable model for unsupervised representation learning, but it cannot perform well with insufficient data points.
- To solve this, the conditional VAE (CVAE) tries to obtain task-invariant latent variable from multiple tasks.

standard Gaussian prior

downstream applications

The CVAE models a conditional probability of x given s
 as:

$$p_{\theta}(\mathbf{x}|s) = \int \frac{p_{\theta}(\mathbf{x}|\mathbf{z}, s)p(\mathbf{z})d\mathbf{z}}{\text{decoder prior}} \mathbb{E}_{\substack{q_{\phi}(\mathbf{z}|\mathbf{x}, s)\\ \text{encoder}}} \left[\frac{p_{\theta}(\mathbf{x}|\mathbf{z}, s)p(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x}, s)} \right]$$

• The CVAE is trained by maximizing the evidence lower bound (ELBO) as follows:

$$\mathcal{F}_{\text{CVAE}}(\theta, \phi) = \mathbb{E}_{p_D(\mathbf{x}, s) q_{\phi}(\mathbf{z} | \mathbf{x}, s)} \left[\ln p_{\theta}(\mathbf{x} | \mathbf{z}, s) \right]$$

$$- \mathbb{E}_{p_D(\mathbf{x}, s)} \left[D_{KL}(q_{\phi}(\mathbf{z} | \mathbf{x}, s) || p(\mathbf{z})) \right]$$

$$= \mathcal{R}(\phi)$$

2. Problem and Contribution

- Although the CVAE can reduce the dependency of **z** on *s* to some extent, this dependency remains in many cases.
- The contribution of this study is as follows:
- 1. We investigate the cause of the task-dependency in the CVAE and reveal the **simple prior** is one of the causes.
- 2. We introduce the **optimal prior** to reduce the task-dependency.
- 3. We theoretically and experimentally show that our learned representation works well on multiple tasks.

3. Mutual Information

• To investigate the cause of dependency of z on s, we introduce the mutual information I(S; Z) that measures the mutual dependence between two random variables.

4a. Theorem 1

• The CVAE tries to minimize the mutual information I(S; Z) by minimizing its **loose** upper bound $\mathcal{R}(\phi)$:

• That is, the simple prior $p(\mathbf{z})$ is one causes of the task-dependency, and $q_{\phi}(\mathbf{z}) = \int q_{\phi}(\mathbf{z}|\mathbf{x},s)p_{D}(\mathbf{x},s)\mathrm{d}\mathbf{x}$ is the optimal prior to reduce it.

4b. Theorem 2

• The ELBO with this optimal prior $\mathcal{F}_{\text{Proposd}}(\theta, \phi)$ is always larger than or equal to original ELBO $\mathcal{F}_{\text{CVAE}}(\theta, \phi)$:

$$\mathcal{F}_{\text{Proposed}}(\theta, \phi) = \mathcal{F}_{\text{CVAE}}(\theta, \phi) + D_{KL}(q_{\phi}(\mathbf{z}) || p(\mathbf{z})) \ge \mathcal{F}_{\text{CVAE}}(\theta, \phi)$$

• That is, $\mathcal{F}_{\text{Proposd}}(\theta, \phi)$ is also a **better lower bound of the log-likelihood** than $\mathcal{F}_{\text{CVAE}}(\theta, \phi)$, which contributes to obtaining better representation.

5. Experiments

Visualization of latent variables on USPS→MNIST

Density estimation performance

	VAE	CVAE	Proposed
USPS→MNIST	-163.25 ± 2.15	-152.32 ± 1.64	-149.08 ± 0.86
MNIST→USPS	-235.23 ± 1.54	-211.18 ± 0.55	-212.11 ± 1.48
Synth→SVHN	1146.04 ± 35.65	1397.36 ± 10.89	1430.27 ± 11.44
SVHN→Synth	760.66 ± 8.85	814.63 ± 10.09	855.51 ± 11.41

Downstream classification accuracy

	VAE	CVAE	Proposed	
USPS→MNIST	0.52 ± 2.15	0.53 ± 0.02	0.68 ± 0.01	
MNIST→USPS	0.64 ± 0.01	0.67 ± 0.01	0.74 ± 0.02	
Synth→SVHN	0.20 ± 0.00	0.21 ± 0.00	0.19 ± 0.00	
SVHN→Synth	0.25 ± 0.01	0.25 ± 0.00	0.26 ± 0.00	